
1

A Real-Time System Monitoring driven by
Scheduling Analysis

Stéphane Rubini, Valérie-Anne Nicolas, Frank Singhoff
Lab-STICC UMR 6285, UBO, UBL, Av. Le Gorgeu, 29200 Brest, France ; email: {surname.name}@univ-brest.fr

José Rufino
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal; email: jmrufino@ciencias.ulisboa.pt

Abstract

Real-Time system engineers may introduce task schedul-
ing analysis at the early stage of the design process. Sys-
tem temporal behavior and task schedules are strongly
related. The noncompliance to an expected schedule is
a symptom of an erroneous state that may result in a
serious risk for the system integrity. Spreading the de-
sign task model, as a timing reference to guide run-time
verification, is a kind of extension to the model driven
design paradigm.

This paper presents the overall architecture of a non-
intrusive hybrid monitor. Configured by the result of
a scheduling simulation, the monitor is intended to ob-
serve the system execution and raised an alarm in case
of divergence with the predicted schedule. To advance
this goal, a first experiment shows the scheduling of 2
tasks rebuilt from the events collected by the monitor
while the RTEMS OS’ scheduler was executing.

Keywords: health monitoring, real-time system, schedul-
ing analysis.

Introduction
In real-time systems, the scheduling is a set of rules that
govern the order of the processing on the system’s hardware
resources. Beyond the need to provide program codes func-
tionally corrects, the designers must also ensure timeliness
of theirs results. To fulfill timing requirements of real-time
systems, the scheduling of the tasks must be taken into ac-
count at the early stages of the design. Scheduling analysis
works from an abstract view of tasks, the task model, which
defines their timing behavior independently of the nature of
computation they have to do.

We propose to extend the scheduling simulation field of use
onto run-time verification of hard real-time systems. Hard
real-time systems are characterized by deterministic execution
and strict time constraints. From a given task model that
specifies the timing parameters to enforce, the analysis tools
verify their respect during the design step. They also define a
deterministic awaited execution trace of the system tasks at
run-time.

A health monitor can observe at run-time the sequence of
events that describes the evolution of the task states from the
schedule point of view, and compare them to those predicted
by the simulation. Our goal is to configure the monitor from
the task models, and then to use a unified specification from
the design of the system to its run-time supervision. This
paper focuses on the overall hardware architecture of the
monitor. We evaluate its ability to collect and report a trace of
scheduling events observed on a target system. Only an initial
and restricted version of the scheduling comparison module
is presented here as a more complete implementation remains
to be developed.

The outline of the paper is the following. The first part char-
acterizes the task models we want to monitor. Next, the
architecture of the health monitor is described. Some techni-
cal problems about the rebuilding of long term time stamps
is emphasized. Section 3 presents the status of the project,
and the results of the initial experiments. The last part of the
article describes some related works and concludes.

1 Task model and run-time verification
The systems we are targeting for run-time monitoring are
time-triggered hard real-time systems on uni-processor ex-
ecution platform, like the systems that control the critical
functions in transport vehicles. The number of tasks and
their parameters (e.g. deadlines, release times) are fixed and
specified at design time. Tasks are periodic and the complete
system itself has a repetitive temporal behavior, eventually
achieved after a stabilization time that can be determined by
scheduling analysis. We observe such a stabilization phase
when the initial release time is not the same for all tasks
(i.e. the offset parameter of some tasks is different from 0).
The scheduling of the tasks, computed off-line or by static
schedulers, must be deterministic.

From the above assumptions, the scheduling trace produced
by a scheduling analysis tool from a given task model may
serve as a "golden reference" for the verification of a sys-
tem also implementing this task model. Fig. 1 sums up this
approach.

The main interest to do monitoring at the schedule level is the
restricted number of event types to observe and their common
semantics on multiple systems. As opposed to the operations

Ada User Jour na l Vo lume 0, Number 0, June 2018



2 Moni tor ing dr iven by schedul ing analys is

Figure 1: Scheduling analysis as "golden" reference.

performed by the tasks which are generally different for each
application, scheduling concepts remain similar.

A challenge of the implementation of this approach is to
define how to manage discrepancies between the task model
specification, the simulation results and the real execution
on the target platform. For instance, the release of a set
of tasks can be stated as simultaneous for the scheduling
while related events are emitted and detected in a sequential
order. The matching of the physical time as approximated
in the observed system, in the monitor and in the result of
simulation constitutes another example of practical problems
that need to be solved.

The first step of the approach is based on a scheduling simu-
lation tool. Our team has already developed such a tool, that
is called Cheddar [1]. The second step is to have a monitor
which allows us to observe the real-time system by inducing a
weak perturbation. The next section presents the architecture
of this health monitor, and gives details about the implemen-
tation of some of its functions.

2 Monitor Architecture
The monitor verifies that the trace of observed events conform
to the scheduling simulation predictions. Hence, there is no
need for reporting the events if the system works as expected.

However, more meaningful information is how the system
goes into an erroneous state, that is, from the monitor obser-
vation, what is the preceding sequence of events before the
failure. This working mode will be named in the sequel back
trace mode. But, the analysis of the consequence of an error
can also be another outcome of the monitor report. In this
second case, the monitor switches in a forward trace mode,
which transfers all captured events to the supervision station.

So, the hardware monitor we are developing is structured
following the previous objectives: run-time verification of the
scheduling, and reporting of the cause or the consequences of
a discrepancy. Fig. 2 shows the 5 main components of the its
architecture and their interactions.

The "event capture" component is in charge of events collect,
either by observing the behavior of the monitored system
from an external point of view, or by receiving the event
explicitly transmitted to it. A time stamp is adjunct to each
traced event, generated by "time stamp generator". Time

Figure 2: Hardware monitor architecture.

stamped events are stored in the "event recorder", while the
"Failure detection" component verifies that the sequence of
events respects an expected order and some timing constraints.
At last, the failure reporting component aims to extract the
event trace from the monitor, to carry it on a supervision
station for post-processing and analysis.

The next paragraphs give details about the design and func-
tions of these 5 components.

2.1 Event capture and recording

Inside the recorder, a FIFO buffer, implemented by a cir-
cular array, stores the collected events, associated to their
time stamps. When the buffer is full, the oldest events are
forgotten.

If the monitor enters into reporting mode, the event recorder
behavior depends on the chosen trace mode. In back trace
mode, event recording is stopped as soon an erroneous event
sequence has been detected, and only the events already
present in the buffer are transmitted towards the supervision
station. In forward trace mode, the monitor resets the array
and the event recording will work as a temporary buffer be-
tween the event collector and the supervision station. If the
buffer becomes full, the event recording stops, and the moni-
tor only flushes the events available in the array. This behavior
ensures that the event trace is not corrupted by intermediate
missing events.

Event capture The basic interest of hybrid monitoring so-
lutions is in reducing the interference on the observed system.

Hardware event sensors could use a technique like bus snoop-
ing [2], which limits the system disturbance. However, its
implementation is technically difficult on processing systems
that include complex memory hierarchy. Moreover, the point
where sensors should listen could be unreachable from the
monitor side [3]. Software sensors are easiest to implement
but require source or OS code instrumentation. However, soft-
ware sensors could impact the application temporal behavior.

Currently, we use software probes that write in monitor’s
memory-mapped registers. An event is coded on a 32 bits
word, and is composed of an event type and a source iden-
tifier (i.e. a task identifier). The monitor manages the time-
stamping of an event by a dedicated hardware component (see
the next paragraph for details), and so the interference on the
target system is expected to be limited (few memory word
transfers by task job).

Volume 0, Number 0, June 2018 Ada User Jour na l



S. Rubin i , V.A. Nico las, F. S inghof f , J. Ruf ino 3

2.2 Failure detection

The failure detection module is in charge of verifying the
system is working as expected. A micro-coded sequencer
implements this function; the micro-code is included in the
hardware configuration (see section 3).

Currently, the sequencer can only detect a periodic, – after
the stabilization time –, and totally ordered suite of events.
The first constraint is in accordance with the assumption on
the target system, whereas the second one should be partially
weakened in future designs. Fig. 3 shows the architecture of
the detector. The values in the microcode memory defines the
sequence of expected events. The events, represented by their
source and their type identifiers, must arrive before or after a
given time expressed in a micro-instruction.

Figure 3: Failure detector (simplified hardware schematic).

We do not give anymore details about this failure detection
module, because its architecture remains to be enrich to verify
a more extended set of properties on the scheduling event
trace.

We do not give anymore details about this failure detection
module, because its architecture remains to be enrich to verify
a more extended set of properties on the scheduling event
trace.

2.3 Time stamping

Constrains of real-time system executions do not only concern
the occurrence of events, but also the instant at which these
events have been produced. So, time stamps go with the
collected events. The following observations justify the way
the time stamps is generated:

• non-intrusive: the access to the current time could im-
ply calls to run-time (OS) services, then disrupting the
execution of the observed application. The amount of
information transfers to the health monitor must also be
restricted to the bare minimum.

• independent; erroneous time management on the ob-
served system could be difficult to analyze if event time
stamps are issued from the same time reference.

• adapted: resolution, cycling and representation of time
must be adapted to the need and the potential of the
hardware monitor implementation. These requirements
should be different than those of the target system.

The preceding remarks lead us to generate the time stamps
within the hardware monitor, at the moment the events are
received. We assume the duration of events collect trough
Memory-Mapped register is constant, and therefore the time
interval between 2 events is the same in the observed system
and in the monitor.

The size, in number of bits, of the time stamp are constant,
and must be small enough to limit (1) the storage needs to
keep the trace in the monitor, and (2) the communication
bandwidth to transfer the trace on the supervision station. A
clock produces the time stamp, whose resolution depends on
a periodic signal generated by frequency division from the
basic system clock.

Fig. 4 shows the synopsis of the time stamp generation circuit:
The frequency divisor creates periodic ticks at a frequency
defined at the start up of the monitored system. This signal
controls the increasing of a counter which gives time stamps
when needed for a new event.

Figure 4: Time stamp management (simplified hardware
schematic).

Considering a divisor factor register on 24 bits, a time reg-
ister implemented on 16 bits, and a basic system clock at
100MHz, the timer resolution goes from 10ns to 160ms,
and the timer counter overflow (cycling) occurs after about
0.6ms at the worst case.

The instant ti at which an event i occurs is ti = ki.tcycle +
tsi.tres, with ki ∈ N+, tres and tcycle being the timer res-
olution and the timer cycling period respectively. tsi is the
time stamp bound to the event i; ki represents the number of
counter overflows since the starting of the system.

The supervision station can get tsi, tres and tcycle, but does
not have access to ki, since the event trace has been collected
in the past, and only time stamps tsi are associated to the
events. So, to be able to rebuild the event instant at the
level of the supervision station, the monitor must be sure
to receive the next event within the counter overflow period
subsequent to a given event. With this condition, ki = ki−1

if tsi ≥ tsi−1, and ki = ki−1 + 1 otherwise.

Ada User Jour na l Vo lume 0, Number 0, June 2018



4 Moni tor ing dr iven by schedul ing analys is

The instant ti can be computed from the instant of the previ-
ous event by the following equation:

ti = ti−1+

{
(tsi − tsi−1).tres if tsi ≥ tsi−1

tcycle + (tsi − tsi−1).tres if tsi < tsi−1

To build the series of the event instants, the condition previ-
ously stated, i.e. the time between two collected events is
less than the timer overflow period, must be ensured by the
monitor. The component "Sync event generator" in Fig. 4
produces pseudo "sync" events to respect a minimum rate of
event occurrence.

3 Implementation and first Experiments
Hardware platform The development board "ZedBoard"
built by AVNET has been chosen to evaluate the ability of the
hardware monitor to verify the health of a real software at
run-time. This board is built around a Xilinx System-On-Chip
Zynq7000. The Soc Zynq contains a Dual ARM Cortex A9
core processing system, and a programmable logic area of the
family Virtex7. The connection with the supervision station
(a Linux PC) is based on a USB2 serial link (115200 bauds
UART emulation).

A VHDL model of the hardware monitor has been synthesized
and implemented into the Zynq’s FPGA. The current capacity
of the event recorder is 1024 events. The failure detection
can recognize sequences of 32 events. The micro-instructions
that encode the sequence are stored in an internal memory
(BRAM), whose the content is currently defined in the VHDL
model. However, it is also possible to populate the BRAM
by a direct updating of the FPGA configuration. With these
parameters, the circuit occupies less than 5 % of the available
FPGA resources whatever their type (LUT, BRAM . . . ).

First experiment: A two-task system This first experi-
ment verifies the monitor ability to collect, time stamp and
transfer events to a supervisor station in the forward trace
mode. We consider a simple task model composed of 2 tasks,
whose the periods are 20 and 5ms, and the capacities 6 and
2ms respectively. The second task has a greater priority than
the first one. The RTEMS OS1 controls the target system. Its
Deterministic Priority Scheduler [4] has been instrumented to
signal scheduling events.

The Cheddar tool2 is a scheduling analysis tool able to select
and apply a set of analysis methods from a given task model
and execution platform. Scheduling simulation results can be
exported or imported as an XML file which contains the in-
stants of significant scheduling events. Fig. 5 is a visualization
of the events collected by the monitor after importation into
Cheddar. The first period of each task appears as too short,
due to time rounding in Cheddar and RTEMS tick resolution
(1ms in this experiment).

The transformation of the simulation trace into an expected
and timed sequence of events must meet several challenges:
How to relate logical simulation time and real execution ones,

1http://www.rtems.org
2http://beru.univ-brest.fr/~singhoff/cheddar/

Figure 5: Collected events shown in the Cheddar’s tool time
line. Axis time unit represents 1 ms.

how to deal with task model abstraction (0-cost task switching
for instance), how to order simultaneous simulation events,
object matching between the simulation and the execution
platform . . .

4 Related works

An overview and a classification of monitors focused on tim-
ing constraints is established in [5]. Criteria like the adapt-
ability, data collection methods, type of targeted systems or
the monitor implementation organize the classification. Fol-
lowing this classification, our monitor is a "hybrid" monitor,
based on a "tracing" data collection method and dedicated
to the observation of "general" "real-time" and "embedded"
system target.

In [6], Bandur et al. show how to implement a timed automa-
ton on a micro-controller. The execution time of instructions
in this micro-controller must be deterministic. The supported
timed automaton assumes only one clock and that the time
interval of concurrent outgoing transitions must be the same.
The approach of this article could be a basis for an improve-
ment of the "failure detection" module in our monitor.

Finally, Peters and Parnas argue in [7] that monitors should
be based on the design requirements of the observed systems.
They identify some necessary condition allowing a monitor
to be feasible. The approach we propose follows this idea,
although the parameters of a task model can be seen as a
derivative of the system specification.

Conclusion

This article describes the overall architecture of a hardware
monitor. First experiments have shown the ability of the mon-
itor to collect the scheduling events of a sample task model
controlled by the RTEMS operating system. The execution
time of a software event sensor in the scheduler is less than
200ns and its intrusivity is limited.

Our goal is to derive automatically the monitor configuration
from the real-time system task model and its scheduling. To
achieve this objective, various assumptions or choices must
be expressed and then specified in the design models. An
architecture description language like AADL [8] can both
specify the task model for the scheduling simulator and supply
matching information to configure the monitor. We expect
that expressing such information should contribute to increase
the quality and conformity of the systems implementation.

Volume 0, Number 0, June 2018 Ada User Jour na l



S. Rubin i , V.A. Nico las, F. S inghof f , J. Ruf ino 5

Acknowledgments This work and Cheddar are supported
by Brest Métropole, Ellidiss Technologies, CR de Bretagne,
CG du Finistère and Campus France PESSOA programs num-
ber 27380SA and 37932TF.

References
[1] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar:

a flexible real-time scheduling framework,” ACM SIGAda
Ada Letters, vol. 24, pp. 1–8, December 2004. ACM
Press, New York, USA.

[2] J. J. P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi, “A non-
interference monitoring and replay mechanism for real-
time software testing and debugging,” IEEE Transactions
on Software Engineering, vol. 16, no. 8, pp. 897–916,
1990.

[3] M. M. Gorlick, “The flight recorder: an architectural
aid for system monitoring,” in ACM SIGPLAN Notices,
vol. 26, pp. 175–181, ACM, 1991.

[4] G. Bloom and J. Sherrill, “Scheduling and thread man-
agement with RTEMS.,” ACM SIGBED Review, vol. 11,
no. 1, pp. 20–25, 2014.

[5] N. Asadi, M. Saadatmand, and M. Sjödin, “Run-time
monitoring of timing constraints: A survey of methods
and tools,” in Proceedings of the the 8th International
Conference on Software Engineering Advances (ICSEA),
Venice, Italy, pp. 391–401, 2013.

[6] V. Bandur, W. Kahl, and A. Wassyng, “Microcontroller
assembly synthesis from timed automaton task specifica-
tions,” in International Workshop on Formal Methods for
Industrial Critical Systems, pp. 63–77, Springer, 2012.

[7] D. K. Peters and D. L. Parnas, “Requirements-based mon-
itors for real-time systems,” IEEE Transactions on Soft-
ware Engineering, vol. 28, no. 2, pp. 146–158, 2002.

[8] P. H. Feiler and D. P. Gluch, Model-based engineering
with AADL: an introduction to the SAE architecture anal-
ysis & design language. Addison-Wesley, 2012.

Ada User Jour na l Vo lume 0, Number 0, June 2018


