
1

Verification of Scheduling Properties Based on
Execution Traces

Valérie-Anne Nicolas, Mounir Lallali, Stéphane Rubini, Frank Singhoff
Lab-STICC UMR 6285, Université de Bretagne Occidentale, UBL, Av. Le Gorgeu, 29200 Brest, France
; email: {surname.name}@univ-brest.fr

Abstract

Despite the use of scheduling analysis when design-
ing hard real-time systems, some erroneous temporal
behaviors may still occur at runtime. Monitoring the
execution of the system during runtime is a way to spot
faulty behaviors. We focus on inline and embedded
monitoring for the verification of general but essential
temporal properties: scheduling properties.
This paper presents an approach for the temporal
scheduling properties verification part of monitoring.
The proposed algorithm has been evaluated on a bench-
mark, detecting missed deadlines, priority inversions,
deadlocks and locked resources, in keeping with schedul-
ing analysis and simulation results.

Keywords: monitoring, trace analysis, scheduling prop-
erty verification, real-time system.

Real-time system correctness depends on its logical and tem-
poral correctness [1]. In the context of hard real-time systems,
the system temporal constraints are essential and have to be
met. The real-time scheduling theory provides methods and
tools to describe, simulate such systems, and to verify tem-
poral properties during the design stage. Despite the large
amount of work in design stage modeling and verification of
hard real-time systems, enhancing the overall system qual-
ity, some erroneous temporal behaviors may still occur at
runtime.

Monitoring the execution of the system is thus mandatory to
guarantee its integrity during its whole execution. Moreover,
to deal with hard timing constraints, the overall monitoring
tool should be embedded into the system, while still being as
non-intrusive as possible, and sufficiently efficient to adapt
the system behavior, when needed, in a restricted delay. A
monitoring tool observes the monitored system and builds
a trace that constitutes a model of the real execution of the
system. There is a number of trace models, depending on
the kind of trace events, and in general closely related to the
monitor tool, the type of monitored application, the intended
properties or behaviors to observe. A processing module deals
with the trace to obtain supervision information, for example
compliance with specific temporal behaviors. A decision
module may take action in line with supervision information,
like ending the system execution for the most critical cases.

This paper presents an instance of a processing module ap-
plying temporal scheduling properties verification on execu-
tion traces. We situate within the framework of the Cheddar
scheduling analysis project and its associated Cheddar toolset
including a scheduling analysis tool, a simulation tool [2], and
a simplified architecture description language (called Ched-
dar ADL [3]). One of the output files when applying the
simulation tool is the simulation trace file. This trace is the
sequence of time-stamped events generated during simulation.
The hereafter proposed verification module is based on the
same system and trace models as in the Cheddar tool.

The paper is organized as follows: Cheddar system model,
Cheddar trace model, and aimed temporal scheduling proper-
ties are described in Section 1. Next, we present the chosen
approach to check temporal scheduling properties on execu-
tion traces in Section 2. In section 3, the behavior of the
proposed algorithm is illustrated on several simple examples.
Then, related work is presented in section 4. We finally con-
clude and point out upcoming improvements in section 5.

1 System model, trace model and schedul-
ing properties

The targeted systems for runtime monitoring are hard real-
time systems on uniprocessor execution platform. The system
model exported from the Cheddar ADL system model de-
scribes a system by a set of XML markup elements. Markup
elements are dedicated to system hardware description (pro-
cessors, cores, address spaces, scheduling parameters, etc.)
and system software description (tasks, resources, resource
sharing protocols, etc.) [3]. As an example, tasks are periodic
and mostly characterized by their period, capacity, deadline,
start time and priority. Resources are mainly characterized
by their critical sections and the sharing protocol defining the
access rules to the resource if it is shared by several tasks.
The critical section for a resource R is the set of critical sec-
tions for the tasks sharing R. The critical section for a task T,
using the shared resource R, is the time interval [begin_time,
end_time] during which T uses R.

The XML trace model produced by the Cheddar simulator
describes a system execution trace by a finite sequence of
markup elements for time-stamped events. The types of
events come from the scheduling theory and describe the
task states from the scheduling point of view. Events at time i
for a task T (and resource R) are:

Ada User Jour na l Vo lume 0, Number 0, June 2018

2 Ver i f ica t ion of Schedul ing Proper t ies Based on Execut ion Traces

Task_Activation(i,T) event sent out each time i where a task T
is activated (ready to run)

Start_of_Task_Capacity(i,T) event when T actually starts running at
time i

Running_Task(i,T, T cur-
rent_priority)

event when T runs at time i (with its pri-
ority that may change due to dynamic
scheduling or resource sharing protocols)

Allocate_Resource(i,T,R) event when a resource R is allocated to
task T at time i

Wait_for_Resource(i,T,R) event when a task T asks for an already
used resource R at time i

Release_Resource(i,T,R) event when a resource R is released by
task T at time i

End_of_Task_Capacity(i,T) event when a task T finishes its execution
at time i

An extract of an XML execution trace model is presented in
Figure 1 (in Section 2).

From the verification perspective, we are interested in schedul-
ing properties of execution traces. For any given trace Exe,
we focus on: P_priority_inversion(Exe), P_deadlock(Exe),
P_activation(Exe), P_capacity(Exe), P_deadline(Exe),
P_allocate(Exe), P_unlock(Exe) and P_wait(Exe). The
properties P_deadlock and P_priority_inversion characterize
the absence of the corresponding scheduling theory usual
concepts. In the simplest case and with a preemptive fixed
priority scheduler, two tasks T1 and T2 are in deadlock if T1
locks a resource R1, T2 locks a resource R2, and T1 waits for
R2 while T2 waits for R1. Both tasks prevent each other from
accessing the shared resources R1 and R2 and therefore are
blocked, missing their deadlines.
Let see now an example of scheduling when a priority
inversion occurs. A priority inversion occurs when two
tasks T1 (a low priority) and T2 (a high priority) share a
resource R, a third medium priority task T3 uses no resource.
T1 begins and owns R, then T2 is activated and preempts T1,
T2 later blocks waiting for R (still locked by T1). T1 resumes
its execution and T3 is activated before T1 has released R.
T1 is preempted by T3. At that point, T3 (medium priority)
can run and thus blocks T2 (high priority), through T1, even
though they share no resource.

We now define the other properties investigated in this paper.
P_activation(Exe) checks for each system task that Task_Activation

events occur at the accurate times (periodically from
start time), with no missing or extra Task_Activation
events in the whole trace Exe.

P_capacity(Exe) is true if each task job in the trace Exe runs exactly for
the duration of its capacity.

P_deadline(Exe) states the absence of missed deadline for all task job
in the trace Exe.

P_allocate(Exe) checks for each Allocate_Resource(i,T,R) event in the
trace Exe that R is really needed by T, R is free and
that this event occurs at the required time.

P_unlock(Exe) makes sure for each system task in the trace Exe that
owned resources are released at the required time, and
in any case before deadline.

P_wait(Exe) verifies for each Wait_for_Resource(i,T,R) event in the
trace Exe that R is really needed by T, R is not free
and that this event occurs at the required time.

Brought together, all these properties give a fairly complete
overview of the scheduling behavior of the system.

In the next section we describe the algorithm for checking
these properties, based on the system and trace models pre-
sented above.

2 Verification of scheduling properties on
execution traces

The final objective of the verification module is to be embed-
ded into the real-time system and run inline during the system
execution. Its execution speed has thus to be compatible with
that of the system. Another constraint, even if it is related, is
that the monitored real-time systems may have non finite exe-
cutions, or finite executions but with a great number of events.
Therefore, during execution, the verification module does not
take as input the whole trace, but a finite fixed size slice of
it, using a transition buffer filled by the hardware part of the
monitor. The direct induced impact is that the verification
module execution time on one slice must be lower than the
system execution time corresponding to the next trace slice,
otherwise some trace events may be lost. For these reasons,
the general frame of our verification algorithm is a one and
only one pass through the trace.

As shown on the example below (which is a limited extract
of events from a trace for conciseness), trace events are not
fully ordered. This is especially the case for Task_Activation
events. Task_Activation events for a task T job are com-
puted at the end of the previous task T job and immediately
sent out stamped with the time of activation of the future
task T job. An instance of that is the Task_Activation event
at time 2 occurring in the trace before events stamped with
time 0 or 1. One may also note that several events may ap-
pear at the same time. It is quite common to find at the
same time a Task_Activation event, a Start_of_Task_Capacity
event and a first Running_Task event for the same task as
illustrated by the example at time 0. The events at a same
time may also concern different tasks, as shown at time 3
with a Wait_for_Resource event for a first task and a Re-
lease_Resource event for a second task. There is a number
of such possible combinations. Sorting the trace (according
to time growing order) is thus imperative in order to check
the properties in a single pass through the trace. To sort same
time events, we define an order relation event_order on events,
well suited to the kind of checked properties. For same time
events, the order relation event_order states that:

End_of_Task_Capacity < Task_Activation <

Start_of_Task_Capacity < Running_Task

∧ Allocate_Resource = Wait_Resource = Release_Resource

The order relation event_order is compliant with the trace
semantics. Actually, if a task job ends reaching its dead-
line (a End_of_Task_Capacity(i,T) event then follows the
last Running_Task(i-1,T,prio) event), the task next job will
be activated at the same time i, and possibly started and
first runned also at the same time. On the contrary, by
construction, the trace can not exhibit a Task_Activation
(or Start_of_Task_Capacity or Running_Task) event and a
End_of_Task_Capacity event at the same time for a same task

Volume 0, Number 0, June 2018 Ada User Jour na l

V.A. Nico las, S. Rubin i , M. La l la l i , F. S inghof f 3

<event_table>
<mono_core_processor id="id_2">
<scheduling_result>
<result>
<time_unit>0 </time_unit>
<time_unit_event>
<type_of_event>TASK_ACTIVATION</type_of_event>
<activation_task ref="id_4"> </activation_task>
</time_unit_event>
<time_unit>2 </time_unit>
<time_unit_event>
<type_of_event>TASK_ACTIVATION</type_of_event>
<activation_task ref="id_5"> </activation_task>
</time_unit_event>
<time_unit>0 </time_unit>
<time_unit_event>
<type_of_event>START_OF_TASK_CAPACITY</...>
<start_task ref="id_4"> </start_task>
</time_unit_event>
<time_unit>0 </time_unit>
<time_unit_event>
<type_of_event>RUNNING_TASK</type_of_event>
<running_task ref="id_4"> </running_task>
<current_priority>89</current_priority>
</time_unit_event>
<time_unit>1 </time_unit>
<time_unit_event>
<type_of_event>ALLOCATE_RESOURCE</...>
<allocate_task ref="id_4"> </allocate_task>
<allocate_resource ref="id_26"> </allocate_...>
</time_unit_event>
<time_unit>1 </time_unit>
<time_unit_event>
<type_of_event>RUNNING_TASK</type_of_event>
<running_task ref="id_4"> </running_task>
<current_priority>89</current_priority>
</time_unit_event>
<time_unit>2 </time_unit>
<time_unit_event>
<type_of_event>START_OF_TASK_CAPACITY</...>
<start_task ref="id_5"> </start_task>
</time_unit_event>
<time_unit>2 </time_unit>
<time_unit_event>
<type_of_event>RUNNING_TASK</type_of_event>
<running_core>core1</running_core>
<running_task ref="id_5"> </running_task>
<current_priority>90</current_priority>
</time_unit_event>
<time_unit>3 </time_unit>
<time_unit_event>
<type_of_event>WAIT_FOR_RESOURCE</...>
<wait_for_resource_task ref="id_5"> </...>
<wait_for_resource ref="id_27"> </wait_...>
</time_unit_event>
<time_unit>3 </time_unit>
<time_unit_event>
<type_of_event>RELEASE_RESOURCE</...>
<release_task ref="id_4"> </release_task>
<release_resource ref="id_26"> </release_...>
</time_unit_event>
<time_unit>9 </time_unit>
<time_unit_event>
<type_of_event>END_OF_TASK_CAPACITY</...>
<end_task ref="id_4"> </end_task>
</time_unit_event>
</result>
</scheduling_result>
<mono_core_processor id="id_2">
</event_table>

Figure 1: Extract of an XML execution trace model

job. Regarding resources, task resource allocation (or wait
for resource) is first processed at the beginning of the first
time unit where the resource is used by the task, whereas
resource release is done at the end of the last using time unit.
The same time resource related events can not be ordered
in the absolute. Each pattern is specific, depending on the
real use of resources by tasks. The order relation event_order
states that the three resource related events are equal, which

finally means that the order of these events in the initial trace
is preserved.

We now describe the proposed algorithm for verifying
scheduling properties in one pass from the time and
event_order sorted trace. The algorithm is based on a rep-
resentation of the system state (including task and resource
states), and starting from an inactive initial state (built from
the system model), simulates the execution represented by
the trace, event by event. At the same time, and depending on
the properties to verify, some checks are done on event occur-
rences or periodically at the end of each same time sequence.
Periodic checks concern the tasks reaching the end of their
period, and are needed to cope with possible missing events
in the trace, such as missing Task_Activation events. It also
allows to complete the detection of undue locked resources
(P_unlock), or task missed deadline detection (P_deadline).
The different points where the properties are checked are de-
picted in the following simplified outline of the algorithm
(described in Figure 2). The algorithm has been implemented
in C in order to fit with the monitoring constraints: embedded
into the system and efficiency.

Algorithm: properties_checking (system S, trace T)

foreach event E from trace T do
switch E do

case Activation do
P_activation; P_deadline;

case Start do
Start event error detection;

case Running do
Running event error detection;
P_capacity; P_deadline;

case End do
End event error detection; P_capacity;
P_deadline; P_unlock; P_priority_inversion;

case Allocation do
P_allocate;

case Release do
Release event error detection;

case Wait do
P_wait; P_deadline; P_deadlock; P_unlock;

end
end
periodic_check;

Figure 2: Properties Checking Algorithm

In the next section, the behavior of the algorithm is illustrated on
several simple trace examples.

3 Evaluation of the verification module
The algorithm described in Section 2 has been evaluated on a bench-
mark of nine system and trace examples. This benchmark mainly
comes from a Cheddar tutorial [4]. Each example is made of a sys-
tem model and a trace model resulting from the Cheddar simulation
tool. For all the examples, the verification algorithm results are
compliant with Cheddar scheduling analysis and simulation tools.
Among the nine examples, four exhibit erroneous behaviors (missed
deadlines, deadlocks, priority inversions or locked resources).

For brevity, we here only present two mistaken examples. For each
of them, we assume a preemptive fixed priority scheduling policy
and priorities are assigned according to Rate Monotonic.
In the first example, a system with three periodic tasks, synchronous
and with deadlines on request is considered.

Ada User Jour na l Vo lume 0, Number 0, June 2018

4 Ver i f ica t ion of Schedul ing Proper t ies Based on Execut ion Traces

Task Period Deadline Capacity Start time
T1 6 6 2 0
T2 8 8 2 0
T3 12 12 5 0

Tasks T1 and T3 share a resource S with mutual exclusion access: T3
needs S during all its capacity, T1 needs S during the 2nd unit of time
of its capacity only. There is no specific priority inheritance protocol,
blocked tasks are thus stored in a FIFO queue. The trace contains
75 events and expresses the system behavior over an hyper-period,
that is from time 0 to time 24.
When executing our verification algorithm, a priority inversion be-
tween tasks T1 and T2 is detected at times 8 and 9, and a missed
deadline for the task T1 is detected at times 12 and 13.
Changing the sharing resource protocol by PIP (Priority Inheritance
Protocol) leads to a correct behavior of the system, attested by the
execution of the verification algorithm which finds no more errors.

The second example is a system with two periodic tasks and one
shared resource.

Task Period Deadline Capacity Start time
T1 20 20 10 0
T2 10 10 4 1

Tasks T1 and T2 share a resource R1 with mutual exclusion access:
T1 needs R1 from the the 1st unit of time of its capacity up to the
4th (included), and from the 3rd unit of time of its capacity up to
the 6th (included). T2 needs R1 from the the 1st unit of time of
its capacity up to the 2nd (included). There is no specific priority
inheritance protocol. This system hyper-period is 20 but we studied
a longer trace of 85 events from time 0 to time 40. When executing
our verification algorithm, a deadlock on R1 for task T1 is detected
at all times from 2, a missed deadline for the task T2 is detected at
all times from 11 (while waiting for R1), an unlock error is detected
on R1 for T1 at time 19 and 39, a missed deadline for the task T1 is
detected at all times from 20 (while waiting for R1).

On this benchmark, results confirm that the whole set of considered
properties give a fairly complete overview of the scheduling behavior
of the system, similar to scheduling analysis and simulation results.

4 Related works
Several works have been proposed for runtime verification/monitor-
ing of timed properties based on execution traces. [5] proposes a
runtime verification framework for SoC (Systems on Chip) model.
This framework allows the verification of temporal properties de-
scribed in PSL (Property Specification Language), and the analysis
of verification results. The authors of [6] present a software archi-
tecture based on Logic-Labeled Finite-State Machine (LLFSM) and
regular expressions to perform runtime monitoring and verification
of robotic system behaviors. [7] proposes a runtime verification ap-
proach for timed systems based on executable models. They define
an on-the-fly conformance relation (between implementations and
specifications) used for runtime verification, and they suggest an
on-the-fly matching for timed traces. The proposed method has been
implemented in an open-source toolkit which has been experimented
on the verification of some units of different industrial microproces-
sors. [8] presents a predictive runtime verification framework for
systems with timing requirements. Unlike the previous approaches,
this predictive verification is related to a system which is not moni-
tored as a black-box (some information about the system behavior is
known).

Previous works propose their own verification framework and/or
architecture that are not integrated as a part of the real-time system
monitoring. In addition, these works deal with general temporal
properties. In our case, we focus on scheduling properties verifica-
tion for inline and embedded monitoring, and we aim at using our
verification module as a part of an inline embedded health monitor.

5 Conclusion
In this paper, an approach for the verification of scheduling proper-
ties on uniprocessor hard real-time system execution traces has been
presented. This verification module has been implemented in C and
evaluated on a simple benchmark. Testing showed that verification
module results were compliant with Cheddar scheduling analysis
and simulation results, thus confirming that the set of considered
properties gives an accurate overview of the scheduling behavior of
the system.
Currently, the verification module deals with one slice of execution
trace. Next improvement is to enchain the processing of several
execution trace slices.
The objective of this project is to use this verification module as a
part of an inline embedded health monitor. Further work is needed
to evaluate the verification module on more consistent and realis-
tic examples, so as to assess its efficiency when embedded into a
real-time system.

Acknowledgments This work and Cheddar are supported by
Brest Métropole, Ellidiss Technologies, CR de Bretagne, CG du
Finistère and Campus France PESSOA programs number 27380SA
and 37932TF.

References
[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-

programming in a hard-real-time environment,” Journal of the
ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[2] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a
flexible real-time scheduling framework,” ACM SIGAda Ada
Letters, vol. 24, pp. 1–8, December 2004. ACM Press, New
York, USA.

[3] C. Fotsing, F. Singhoff, A. Plantec, V. Gaudel, S. Rubini, S. Li,
H. N. Tran, L. Lemarchand, P. Dissaux, and J. Legrand, “Ched-
dar architecture description language,” Lab-STICC technical
report, 2014.

[4] F. Singhoff, “Tutorial about cheddar : an example of real-time
scheduling analysis with cheddar,” Lab-STICC technical report,
2015.

[5] L. Pierre and M. Chabot, “Assertion-based verification for soc
models and identification of key events,” in 2017 Euromicro
Conference on Digital System Design (DSD), pp. 54–61, Aug
2017.

[6] V. Estivill-Castro and R. Hexel, “Run-time verification of reg-
ularly expressed behavioral properties in robotic systems with
logic-labeled finite state machines,” in 2016 IEEE International
Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), pp. 281–288, Dec 2016.

[7] M. M. Chupilko and A. S. Kamkin, “Runtime verification based
on executable models: On-the-fly matching of timed traces,” in
Proceedings Eighth Workshop on Model-Based Testing, MBT
2013, Rome, Italy, 17th March 2013., pp. 67–81, 2013.

[8] S. Pinisetty, T. Jron, S. Tripakis, Y. Falcone, H. Marchand, and
V. Preoteasa, “Predictive runtime verification of timed proper-
ties,” J. Syst. Softw., vol. 132, pp. 353–365, Oct. 2017.

Volume 0, Number 0, June 2018 Ada User Jour na l

