Multi-Concern Dependability-centered Assurance for Space Systems via ConcertoFLA

Barbara Gallina, Zulqarnain Haider, Anna Carlsson, Silvia Mazzini, Stefano Puri
{barbara.gallina, zulqarnain.haider}@mdh.se
anna.carlsson@ohb-Sweden.se
{stefano.puri, silvia.mazzini}@intecs.it

This work is supported by the EU and VINNOVA via the ECSEL project AMASS
https://www.amass-ecsel.eu/
Context and motivation

Space Systems

Compliance

Dependability, Safety and Security Requirements...

Tool Supported Dependability-centered Multi-Concern Assurance

- Co-analysis
- Management of trade-offs
- Complexity Reduction
- Compliance to ECSS

ECSS Standards

June 20-22 2018, 23rd International Conference on Reliable Software Technologies
Talk outline

• Background
 – European Cooperation For Space Standardization (ECSS) Standards
 – Tool Supported CHESS Methodology
 • ConcertoFLA

• Multi-Concern Dependability-centered Assurance Approach

• Attitude Control System Example
 – Modeling of ACS and dependability
 – Failure Logic Analysis (FLA)
 – FLA results and interpretation for dependability attributes

• Conclusion
ECSS Standards

Dependability
ECSS-Q-ST-30C

Safety ECSS-Q-ST-40C

Software Product Assurance
ECSS-Q-ST-80C

Secure Software Engineering
Standard ESSB-ST-E-008

6.4.1 General
a. Dependability analyses shall be conducted on all levels of the space system and be performed in respect of the level that is being assessed i.e. System, Subsystem and Equipment levels.

7.5.2 Hazard analysis

7.5.4.5 Fault tree analysis
a. The fault tree analysis shall be used to establish the systematic link between the system-level hazard and the contributing hazardous events and subsystem, equipment or piece part failure.

6.2.2.2
a. The supplier shall perform a software dependability and safety analysis of the software products, in accordance with the requirements of ECSS-Q-ST-30 and ECSS-Q-ST-40 and using the results of system-level safety and dependability analyses, in order to determine the criticality of the individual software components.

7.2.2.2
b. The supplier shall perform a cyber-security risk assessment of the software products in order to determine the security sensitivity of the individual software components.
CHESS is an open-source methodology and toolset available from Eclipse/Polarsys
- Model Driven Methodology
- Component Based Approach
- Separation of Concerns
- Dependability Profile

https://www.polarsys.org/projects/polarsys.chess
ConcertoFLA

- ConcertoFLA is a failure logic analysis tool to qualitatively evaluate failure behavior of a component based system, given the failure behavior of individual components
Overview of ConcertoFLA approach

- Failure Propagation Transform Calculus (FPTC)

Input ports \(\{ \text{failures} \} \) → FPTC Expressions → output ports \(\{ \text{failures} \} \)

Inputport.failuretype \(\rightarrow \) Outputport.failuretype

- Failure types
 - Value [Coarse, Subtle]
 - Timing [Early, Late]
 - Provision [Omission, Commission]

- Component behavior
 - Sink
 - Source
 - Transform
 - Propagate
Multi-Concern dependability centered assurance

- Qualitative evaluation of system dependability
 - Is the system acceptably safe, secure, reliable? etc.

- Design decisions
 - Introduce safety, security and reliability measures accordingly
 - System designer evaluates the tradeoff and re-design
Attitude Control System (ACS)

- ACS controls the orientation of the satellite relative to a reference object.

Attitude Control Functions
- Process units data
- Estimate the state
- Compute the control torque to be applied on satellite for maintaining desired attitude
ACS Operational modes

- Different operational modes
 - Depending upon missions
 - Involves different units – sensors and actuators

- Sun Acquisition and Survival mode (SASM)

![Diagram showing ACS Operational modes]

- Sun Sensor
- Gyro Sensor
- ACS
- Propulsion Thrusters

measurement \rightarrow ACS \rightarrow command
SASM Mode Functional Requirements

- Functional Requirements for computing the torque in SASM mode

The RCT sun acquisition control function shall compute and output a control torque based on:
- PD-controller
- Gyroscopic torque compensation
- Deadband filter.

in order to point the S/C (it's reference direction) at the sun.
ACS Architecture in CHESS
Components behave as propagator in the preliminary design, before introducing dependability means.
• The value of the state estimates is invalid
Backpropagation of Results

FLA:sunEstVec.valueCoarse, specTorque.wildcard, propTorque.wildcard, feedforwardTorque.wildcard

ctrlTorque.valueCoarse;
Failure Propagation Paths

- Failure Propagation Path Browser
 - Output Ports
 - Failure Type
 - Previous Failures
Failure Propagation Paths

<?xml version="1.0" encoding="ASCII"?>

<inputPorts id="model::modelComponentView::ACSCComposite::angVelocity" name="angVelocity" connectedPorts="/&c

 <failures type="failure" id="valueSubtle"/>
 <failures type="failure" id="valueCoarse"/>

</inputPorts>

<inputPorts id="model::modelComponentView::ACSCComposite::gyroDistTorques" name="gyroDistTorques" connectedPor

 <failures type="failure" id="valueSubtle"/>
 <failures type="failure" id="valueCoarse"/>

</inputPorts>

<inputPorts id="model::modelComponentView::ACSCComposite::sunEstVec" name="sunEstVec" connectedPorts="/&compo

 <failures type="failure" id="valueSubtle"/>
 <failures type="failure" id="valueCoarse"/>

</inputPorts>

<?xml version="1.0" encoding="ASCII"?>
<failures type="failure" id="valueCoarse" previousFailures="@components.2/@outputPorts.0/@failures.0"/>
</outputPorts>
Interpretation for Reliability

- ACS provides inaccurate torques
 - valueSubtle failure at TorqueSelector's ctrlTorque output port
 - valueCoarse failure at ACS sunEstVec input port
 - valueCoarse failure at FeedforwardController component's feedforwardTorque output port
 - valueCoarse failure at SteerController component's specTorque output port
 - valueCoarse failure at PDCController component's propTorque output port
Interpretation for Safety

- Safety Hazard
 - Inaccurate control torques in Sun acquisition and survival mode
Interpretation for Security

- Security Breach
 - ACS provides corrupted services and loses integrity
The RCT sun acquisition control function shall flag the control invalid and output a control torque of zero if any of:
- estimated sun vector
- estimated rate
are invalid.

The RCT sun acquisition control function shall flag the control invalid and output a control torque of zero if the angular momentum estimation function indicate that there is no valid S/C body rate.
Conclusion and Future Work

- CHESS toolset is used to
 - Model the ACS and dependability information
 - Perform failure logic analysis
 - Manually interpret the results for multi-concern

- Provision of tool-support.
Thank you for your attention!

Discussion time…

Call For Fast Abstracts….. Deadline July 2, 2018